Coherent structure extraction of turbulent jets for noise control

M. Schlegel ... TU Berlin
B.R. Noack, P. Comte Pprime / U Poitiers
D. Kolomenskiy, K. Schneider U Aix-Marseille
M. Farge Wiko Berlin / ENS Paris
G. Tadmor NEU Boston
goal = a physical understanding of the flow mechanisms enabling jet noise control
goal = a physical understanding of the flow mechanisms enabling jet noise control

Coherent structure analysis

- Coherent vortex extraction (CVE)
- Proper orthogonal decomposition (POD)
- Most observable decomposition (MOD)

Dynamic and stochastic modelling

- Galerkin models (GM)

Aeroacoustics

- CAA hypotheses
- Actuation design
- Control design
Jet flow data base

3000 LES/CAA snapshots of an incompressible jet ($Ma=0$) at $Re_D=3600$ over 300 convective time units

30D

76D

76 far-field sensors

[Diagram showing the flow field with sensor locations and time series data]
Contents

goal = a physical understanding of the flow mechanisms enabling jet noise control

Coherent structure analysis

Dynamic and stochastic modelling

Aeroacoustics

Coherent vortex extraction (CVE)

Proper orthogonal decomposition (POD)

Most observable decomposition (MOD)

Galerkin models (GM)

Actuation design

Control design

CAA hypotheses
Coherent vortex extraction (CVE)

orthogonal wavelet decomposition of vorticity snapshots

\[\omega(x) = \sum_{\lambda \in \Lambda} \tilde{\omega}_\lambda \psi_\lambda(x) \]

with Coiflet 12 wavelets \(\psi_\lambda \)

CVE by thresholding of \(\tilde{\omega}_\lambda \)'s and reconstruction

total vorticity \(\omega = \)

coherent vorticity \(\omega_C + \)

incoherent vorticity \(\omega_I \)

enstrophy

\[Z(\omega) = \int_{\Omega} \omega \cdot \omega \, dy = Z(\omega_C) + Z(\omega_I) \]

Figures display isosurfaces of the vorticity magnitude.
CVE results

Enstrophy Resolution

![Enstrophy Resolution Graph](image1)

Enstrophy Spectra

![Enstrophy Spectra Graph](image2)

PDF of Vorticity

![PDF of Vorticity Graph](image3)

Table: Coherent and Incoherent Components

<table>
<thead>
<tr>
<th></th>
<th>N [%]</th>
<th>Z [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Coherent</td>
<td>4.75</td>
<td>91.35</td>
</tr>
<tr>
<td>Incoherent</td>
<td>95.25</td>
<td>8.65</td>
</tr>
</tbody>
</table>

Note: The PDF of vorticity graph shows a Gaussian fit.
CVE examination of a CAA hypothesis

"Jet noise is generated from local coherent structures."

Helmholtz-Hodge decomposition of flow fields

incompressible space = 'fluxless knots' + 'curly gradients'

\[u = u_\omega + \nabla \xi \]

where \(u_\omega = u_\omega(\omega) = \nabla \times \varphi \) employing the solution of problem \(\Delta \varphi = -\omega \) with homogeneous Dirichlet BC

CAA with \(u_\omega = u_\omega(\omega) \) and CAA with \(u_\omega = u_\omega(\omega_C) \)

In the left picture, results based on total (coherent) vorticity are represented by a blue line (red circles). In both pictures, the x-axis represents the streamwise locations of the aeroacoustic sensors.
goal = a physical understanding of the flow mechanisms enabling jet noise control

Coherent structure analysis

- Coherent vortex extraction (CVE)

Dynamic and stochastic modelling

- Proper orthogonal decomposition (POD)

- Galerkin models (GM)

- Most observable decomposition (MOD)

Aeroacoustics

- CAA hypotheses

- Actuation design

- Control design
Proper orthogonal decomposition (POD)

Hydrodynamic field

\[u'(x, t) \approx \sum_{i=1}^{N} a_i^u(t) u_i(x) \]

Aerodynamic or aeroacoustic observable

\[q'(y, t) \approx \sum_{i=1}^{M} a_i^q(t) q_i(y) \]

Most efficient resolution of hydrodynamic fluctuations

\[Q^\Omega (u') = \left\langle \int_{\Omega} u' \cdot u' \, dx \right\rangle \]

Most efficient resolution of aerodynamic or aeroacoustic goal functionals

\[Q^\Gamma (q') = \left\langle \int_{\Gamma} q' \cdot q' \, dy \right\rangle \]

\[\langle f \rangle := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f \, dt \]
Definition of POD modes

POD modes \(u_i \) = critical points of maximum problem

\[
\max_{\varphi \in S^u} \frac{\left\langle \left| \int_{\Omega} u' \cdot \varphi \, dx \right|^2 \right\rangle}{\int_{\Omega} \varphi \cdot \varphi \, dx}
\]

\(u_i \)'s fulfill Fredholm integral equation on \(S^u \)

\[
\int_{\Omega} \left\langle u'(x, t) \otimes u'(x', t) \right\rangle u_i(x') \, dx' = \lambda_i^u u_i(x)
\]

with the POD eigenvalues \(\lambda_1^u \geq \lambda_2^u \geq \ldots \lambda_N^u > 0 \),
representing the modally resolved \(Q^\Omega(u') \)
POD results of incompressible jet residuum

284 modes resolve 90% of total kinetic energy \(K_\Omega := \frac{1}{2} Q_\Omega \)

velocity field \(u \)

mode 1

mode 10

mode 100

Figures display isosurfaces of the \(x \)-components (bright: positive, dark: negative).
Galerkin-modelling of the incompressible jet

Galerkin system $\dot{\mathbf{a}} = f(\mathbf{a})$ ($N = 30$)

\[
\mathbf{u}(x, t) \rightarrow \partial_t \mathbf{u} = \frac{1}{Re} \Delta \mathbf{u} - \nabla (\mathbf{u} \cdot \mathbf{u}) - \nabla p
\]

\[
\mathbf{u}[N] = \sum_{i=0}^{N} a_i \mathbf{u}_i \rightarrow \frac{d a_i}{d t} = c_i + \sum_{j=0}^{N} l_{ij} a_j + \sum_{j,k=0}^{N} q_{ijk} a_j a_k
\]

mode coefficients

Navier-Stokes attractor is represented by dotted lines, Galerkin model by solid lines.
Contents

goal = a physical understanding of the flow mechanisms enabling jet noise control

Coherent structure analysis

Dynamic and stochastic modelling

Aeroacoustics

Coherent vortex extraction (CVE)

Galerkin models (GM)

Actuation design

CAA hypotheses

Proper orthogonal decomposition (POD)

Most observable decomposition (MOD)

Control design
Proper orthogonal decomposition (POD)

hydrodynamic field

\[u'(x, t) \approx \sum_{i=1}^{N} a_i^u(t) u_i(x) \]

\[q'(y, t) \approx \sum_{i=1}^{M} a_i^q(t) q_i(y) \]

most efficient resolution of hydrodynamic fluctuations

most efficient resolution of aerodynamic or aeroacoustic goal functionals

\[Q^\Omega (u') = \left\langle \int_{\Omega} u' \cdot u' \, dx \right\rangle \]

\[Q^\Gamma (q') = \left\langle \int_{\Gamma} q' \cdot q' \, dy \right\rangle \]

\[\langle f \rangle := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) \, dt \]
Most observable decomposition (MOD)

optimal resolution of correlated goal functional:

\[u' \approx \sum_{i=1}^{L} a_i^A(t) u_i^A(x) \quad \leftarrow \quad \text{"MOD approximation"} \]

most efficient resolution of correlated goal functional

\[Q^A(u') = \left\langle \int_{\Gamma} q'(u') \cdot q'(u') \, dy \right\rangle \]

How to model the mapping from \(u' \) to \(q' \)?
Definition of MOD modes

Linear mapping \((\tau = \text{time delay}) \):
\[
q'(t + \tau) = C \ u'(t)
\]

"Most observable" MOD modes:

\[q_1 \quad \rightarrow \quad u_1^A := C^{-1} q_1 \]

\[q_2 \quad \rightarrow \quad u_2^A := C^{-1} q_2 \]

\[q_L \quad \rightarrow \quad u_L^A := C^{-1} q_L \]
Definition of MOD modes

ambiguity of C^-

⇒ add side constraints, addressed to control purposes

minimum principles
control perspective

flow attractor residual of MOD approximation
flow reconstruction

“energy” quantity $Q^\Omega(u')$
energy reduction causes reduction of the correlated goal functional

Dynamic observer design
Energy-based controller design

‘least-residual’ MOD
‘least-energetic’ MOD
Definition of MOD modes

each constraint defines 'observable' MOD subspace

\[C^{-} S^q = C^{-} C S^u =: P S^u \]

with projection operator \(P \)

\[\Phi_0 = P \Phi \]

\[\Phi \]

state–space attractor

kernel of \(C^* C \)

range of \(C^* C \)

'observable' subspace
Definition of MOD modes

Each constraint defines 'observable' MOD subspace

\[C^{-S^q} = C^{-C}S^u =: PS^u \] with projection operator \(P \)

Diagram Details:
- **Range of \(C^*C \):** The range of the operator \(C^*C \) is indicated by the green arrow pointing upwards.
- **Kernel of \(C^*C \):** The kernel of the operator \(C^*C \) is indicated by the blue arrow pointing to the right.
- **Vectors:**
 - \(\Phi_0 = P \Phi \) with \(P \) being the projection operator.
 - \((I-P) \Phi \) indicates the part of \(\Phi \) not in the range of \(P \).
 - \(P^c \Phi \) and \(P^c \Phi_0 \) are shown in dashed lines, emphasizing their relationship to \(\Phi_0 \) and \(\Phi \).
Definition of MOD modes

Each constraint defines 'observable' MOD subspace
\[C^{-S^q} = C^{-C}S^u =: P S^u \] with projection operator \(P \)

\[\text{range of } C^*C \]

\[\text{subspace of least attractor residuum} \]

\[(I-P^Z)\Phi \]

\[\text{kernel of } C^*C \]
Definition of MOD modes

for $P = \mathbb{P}^Z$ (LR-MOD) or $P = \mathbb{P}^C$ (LE-MOD):

MOD modes u^A_i = critical points of maximum problem

$$\max_{\varphi \in \mathbb{P}S^u} \left\langle \left| \int_{\Omega} C u' \cdot C \varphi \, dx \right|^2 \right\rangle$$

u^A_i's fulfill Fredholm integral equation on $\mathbb{P}S^u$

$$P \int_{\Omega} \left\langle u'(t) \otimes (C^* C u'(t)) (x') \right\rangle u^A_i(x') \, dx' = \lambda^q_i u^A_i$$

with the MOD eigenvalues $\lambda^q_1 \geq \lambda^q_2 \geq \ldots \lambda^q_L > 0$, representing the modally resolved $Q^A(u')$
MOD results of incompressible jet

MOD residual

33 modes resolve 90% of $Q^A(u')$.

⇒ System reduction by one order of magnitude !!!

least-residual MOD modes

mode 1

mode 2

mode 3

Figures display isosurfaces of the x-components (bright: positive, dark: negative).
Galerkin-model of a thin layer

Galerkin system $\dot{a} = f(a)$
describing flow dynamics
(thin layer around plane $z = 0$)

modal TKE distribution

Navier-Stokes attractor is represented by
dotted lines, Galerkin model by solid lines.

POD coefficient $a_5(t)$

POD coefficient $a_{80}(t)$
Model-based jet noise control

suppression of 'loud' structures by penalisation of energy growth in the 'least-energetic' MOD subspace, employing two plasma actuators at the end of the potential core

evolution of level of aeroacoustic fluctuations

⇒ noise reduction by 2 dB in average

Natural attractor dynamics are represented by dashed lines, controlled model dynamics by solid lines.
Summary

- Spatially local coherent structures can be distilled from CVE, substantiating the CAA hypothesis of being the cause of jet noise generalisation.
- Coherent jet structures are extracted based on POD.
- Modes, most contributing to a linearly related, aero-acoustic observable, are identified by MOD, a generalisation of POD which is tailored for purposes of observer and noise control design.
- Via MOD, a dimension reduction by one order of magnitude is obtained against POD.
- Penalising the energy flow into the “loud” MOD subspace, capability of a model-based control for jet noise suppression is demonstrated.
POD of 2D cylinder wake flow ($\text{Re}=100$)

\[u' = \sum_{i=1}^{8} a_i u_i \]

8-dimensional POD model

\[\frac{da_i}{dt} = f_i(a_1, \ldots, a_8) \]

reproduces DNS!

Streamlines of the POD modes u_i are shown for $i = 1, \ldots, 8$.
MOD of 2D cylinder wake flow (Re=100)

observable=lift

observable=drag

Only one MOD mode resolves 100% fluctuations respectively of lift and drag.

Streamlines are shown. The grid unit is given by the cylinder diameter.